
 Journal of
Visual Languages
 & Computing

ARTICLE IN PRESS
1045-926X/$ - se

doi:10.1016/j.jvl

�Correspondi
fax: +351 25935

E-mail addre

kenkahn@toon
1Tel.: +44 18

Please cite this

Computing (2
Journal of Visual Languages and Computing] (]]]])]]]–]]]

www.elsevier.com/locate/jvlc
Towards a specification of the ToonTalk language

Leonel Morgadoa,�, Ken Kahnb,1

aGECAD—Grupo de Investigac- ão em Engenharia do Conhecimento e Apoio à Decisão,

UTAD—Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
bAnimated Programs, Oxford, UK

Received 15 January 2007; received in revised form 5 October 2007; accepted 8 October 2007
Abstract

ToonTalk is a child-oriented programming language whose environment is an animated virtual world, with objects that

children can pick up and use as in a game, such as birds, trucks, and robots, providing direct child-oriented metaphors for

programming constructs. Actions performed by a programmer’s avatar with these objects are both code and coding.

ToonTalk is a powerful system, not just a ‘‘toy’’ system: it is based upon concurrent constraint programming languages,

and programs written in languages such as Flat Guarded Horn Clauses and Flat Concurrent Prolog can be straight-

forwardly constructed in ToonTalk. However, there is not a specification of ToonTalk, for ready implementation in other

environments. We propose that the ToonTalk language lies not in the animations displayed by the current environment,

but on the actions performed by the programmer with virtual world objects; we present a description and analysis of the

methods the ToonTalk language provides to programmers for expressing programs.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: ToonTalk; Animated programming; Action-based programming; Children programming; Concurrent programming; Virtual

environments; Virtual worlds; Virtual environment
1. Introduction

ToonTalk [1,2] is the language that implements a
novel idea in visual programming: animated pro-

gramming. That is, using animation to express the
code of a program, thus going one step beyond
static visual programming. The commercial soft-
ware product ToonTalk [3] is a proof-of-concept
and commercial implementation of this language. It
was the first language to employ this concept and is
e front matter r 2007 Elsevier Ltd. All rights reserved

c.2007.10.002

ng author. Tel.: +351 259350369;

0356.

sses: leonelm@utad.pt (L. Morgado),

talk.com (K. Kahn).

69331621.

article as: L. Morgado, K. Kahn, Towards a specificat

007), doi:10.1016/j.jvlc.2007.10.002
still the only known case (except for a few special
cases in the physical world, as we will mention
shortly), and was the base for several research
projects involving the use of programming for
educational purposes (for example, the Playground
Project [4], the WebLabs Project [5], and doctoral
research on programming with preschoolers [6–8]).
Therefore, the presentation of the concept of
animated programming, in the following para-
graphs, is intertwined with the description and
presentation of ToonTalk.

2. Animated programming

Being a novel concept, it helps to state what
animated programming is not: it is not the
.

ion of the ToonTalk language, Journal of Visual Language and

www.elsevier.com/locate/jvlc
dx.doi.org/10.1016/j.jvlc.2007.10.002
mailto:leonelm@utad.pt
mailto:kenkahn@toontalk.com
dx.doi.org/10.1016/j.jvlc.2007.10.002

ARTICLE IN PRESS
L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]]2
programming of animated characters or plays by
means of static code; it is not the animation of the
execution of static code; it is not the usage of
animated icons or objects in place of traditional
static icons.

Animated programming is the usage of animation

to express the code itself. In order to help picture this
concept, one can think of a programmer saying,
‘‘watch what I do’’ and of a system that records and
interprets the visual (animated) actions of the
programmer. This is just a simplification, for
complete expression of code must also include
methods for other programming constructs, such
as specifying conditions and generalizing the actions
of the programmer.

The fundamental idea behind ToonTalk is that
source code is animated (y). This does not mean
that we take a visual programming language and
replace some static icons by animated icons. It
means that animation is the means of commu-
nicating to both humans and computers the
entire meaning of a program ([2], p. 201).

In this regard, one can think of cases of
‘‘animated programming’’ in the physical world:
for instance, when shooting a movie or rehearsing a
play. Sometimes a director explains his/her inten-
tions to an actor by performing actual body
movements, gestures, facial expressions, etc. In this
sense, there is ‘‘animated programming’’ of the
actor’s performance. By considering the physical
world, some tangible programming systems [9],
which employ physical objects to specify programs,
can also be considered instances of animated
programming, at least partially. For instance, the
main feature of programming the Curlybot, ‘‘an
autonomous two-wheeled vehicle with embedded
electronics that can record how it has been moved
on any flat surface and then play back that motion
accurately and repeatedly’’ [10], is reproducing
physical motion; and programming in Topobo, a
‘‘3-D constructive assembly system with kinetic
memory’’ [11], is entirely done by turning the rotary
joints of programmable pieces. (Yet, in these cases
the ‘‘execution’’ of the program by the actor or
robot is also an animation—an interpretation of the
animation provided by the director/programmer. A
generic animated programming system needs to go
beyond mere cases of ‘‘animation to program
animation’’.) However, programming a human
actor, a Curlybot or a Topobo object all fall short
of being general-purpose animated programming.
Please cite this article as: L. Morgado, K. Kahn, Towards a specificat

Computing (2007), doi:10.1016/j.jvlc.2007.10.002
For instance, while demonstrating something to an
actor, a director often needs to resort to spoken
speech to explain details that cannot be easily
conveyed by movements of the human body or
facial expressions; the Curlybot needs to resort to
non-animated programming for constructs such as
conditions and procedures; and Topobo program-
ming is limited to the specification of motion for its
programmable elements.

Furthermore, physical, tangible programming
systems such as these are also limited in terms of
resources (for instance, their bulkiness, the avail-
ability of enough programmable elements, and the
cost of such elements). The specification or execu-
tion of a program may require 100 actors, or 100
Curlybots, for instance—a complex implementation
situation. Their ability for general-purpose use also
faces specific challenges at the level of user interac-
tion. In this regard, tangible programming systems
have been recently discussed in literature in terms of
the Cognitive Dimensions (CDs) framework [12],
traditionally used to assist the design and evaluation
of graphical user interfaces. Specifically, they were
analyzed in terms of tangible correlates to CDs, a
proposed extension to CDs that aims to provide a
generic framework for applying CDs to manipul-
able solid diagrams [13].

A virtual animated programming language, i.e.,
one based within a personal computer, not requiring
physical props, can be limited only in the same ways
as other programming languages (computability,
processor performance, available memory, and hard
disk space, etc.).

ToonTalk is such a language. It is based upon
concurrent constraint programming languages, and
programs written in languages such as ‘‘Flat

Guarded Horn Clauses, FCP, Parlog, Strand, and

PCN can be straight forwardly constructed in

ToonTalk’’ ([2], p. 200), and vice-versa. As a
consequence, ToonTalk is a powerful system, not
just a ‘‘toy’’ system:

We chose concurrent constraint programming as
the underlying foundation of ToonTalk (y). One
reason is that over ten years of use at many
research centers has demonstrated that there is no
risk that the language will be inadequate for
building a wide variety of large programs. The
languages are small yet very powerful ([2], p. 200).

At the level of user interaction, animated pro-
gramming is an interesting case if paired alongside
static visual programming or tangible programming.
ion of the ToonTalk language, Journal of Visual Language and

dx.doi.org/10.1016/j.jvlc.2007.10.002

ARTICLE IN PRESS
L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]] 3
As one would expect, several issues from tangible
programming are not as relevant in (non-tangible)
animated programming. For instance, the visibility
cognitive dimension tangible correlate of the perma-
nence of the notation, which in tangible program-
ming systems raises significant challenges for some
uses, as discussed in Ref. [13], is not as critical in
animated programming systems, which can readily
store and reproduce the animation notation. How-
ever, some circumstances in animated programming
do seem relevant for an analysis from the perspective
of tangible correlates of CDs. For instance, the
ToonTalk user interface now includes a key for
‘‘unbamming’’, i.e., undoing the consequences of
accidentally dropping an item on another (as we will
describe further ahead, ‘‘dropping’’ is a central action
primitive in ToonTalk animated programming),
which may be analyzed under the tangible correlate
of bulkiness. Regarding static visual programming,
animated programming also presents specific issues
for a CDs analysis. In terms of visibility, one cannot
analyze what a program or program section does, for
instance, without asking the system to reproduce it.
And editing animated programming may present
situations of high viscosity, as when a subprogram
must be edited: it has to be reproduced until the point
where the change is to be made, and in the current
ToonTalk system that implies reproducing all actions
in the subprogram from that change onwards, an
aspect to improve. On other cases, viscosity is very
low, as when one wants to change the kind of data a
subprogram should work with, or when one wants to
make a subprogram communicate with another,
instead of simply producing an end result (all it
takes is placing the head of a communication
channel—a bird—where the end result would be
placed, and possibly a quick erasing of an unneces-
sary constraint from a robot’s thought bubble).

We believe that animated programming in
general and ToonTalk in particular warrant a deep
analysis of the cognitive dimensions of its user
interfacing features, and we refer the reader to
Ref. [13] for a possible starting point for such an
effort. However, that is not our aim here: we simply
clarify how the basic concept of using animation-
producing actions to build computer programs can
be and has been employed.

3. Why program with animation?

When ToonTalk was originally designed, re-
search was already establishing that, regarding
Please cite this article as: L. Morgado, K. Kahn, Towards a specificat

Computing (2007), doi:10.1016/j.jvlc.2007.10.002
programming languages, ‘‘visual representation can

improve human performance’’ ([14], p. 139). Several
usability benefits were expected in ToonTalk from
employing animation, some since demonstrated to
be questionable or not as clear-cut as it was
envisaged, but others since reinforced and clarified,
as discussed below. The most important expectation
was that animation could help users/programmers
better understand the transitions between visual
elements in what would be a visual programming
language. Another expected benefit was that anima-
tion could help provide better metaphors, and
consequently better mappings between program-
ming concepts and those of users:

(y) in order for a static picture to represent the
dynamic behavior of a program, it needs to rely
upon a rich set of encodings. Control and data
flow need to be encoded in abstract diagrams.
Abstract diagrams are arguably easier for people
to deal with than symbolic formalisms, but they
are still very difficult. Why not take the next step
from visual programming languages and begin to
use dynamic images, i.e., animation, to depict the
dynamic processes of a program? ([2], p. 201)

Given the novelty of animated programming
itself, there is no available research specifically
regarding its use, by controlled comparison with
static programming, to support or disprove these
expectations, but informal favorable anecdotal
evidence is mounting up (e.g., Ref. [4]). Research
on some of the design principles adopted 15 years
ago (and described 11 years ago in this journal) has
also provided a better, albeit more complex, picture
of the factors in play. We now know that the use of
animations to convey abstract concepts may pro-
duce no significant benefit or even hinder learning in
some cases [15,16], but that animation does help
users to understand transitions in spatial data [17].
However, research has also shown that the way in
which users interact with animations is an impor-
tant factor: manipulation animations have different
cognitive impacts from simulation animations. The
former have an enabling function: they enable users
to perform more cognitive processing than with
static pictures; the latter have a facilitating function:
they support matching mental processes, rendering
them easier, but this sometimes leads to negative
overall effects [18]. There is also a better under-
standing of how different people are affected by
these kinds of animation: for instance, those with
high learning prerequisites seem to be mainly
ion of the ToonTalk language, Journal of Visual Language and

dx.doi.org/10.1016/j.jvlc.2007.10.002

ARTICLE IN PRESS
L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]]4
affected by enabling animations and their benefits,
whereas those with low learning prerequisites seem
to be more subject to the negative effects from
facilitating animations [18]. In ToonTalk, the user/
programmer is producing the animations by manip-
ulation, not simply being presented with the
simulation of processes; thus, ToonTalk’s use of
animation fulfills a mainly enabling function. Also,
ToonTalk users/programmers can control the
pace and order in which the animations are created,
and are actively involved in the process of under-
standing. Further, the programming environment
generates feedback and support during the pro-
gramming process, involving the user in the active
understanding of the events taking place, as we
describe further ahead—features that are now
recommended for effective use of animations ([16],
p. 264).

Regarding the importance of metaphors in visual
programming languages, research has since shown
that—at least with adult users—employing visual
metaphors is useful, but ‘‘the effect of metaphors is
smaller than either the effect of expertise or the
effect of pictorial mnemonics’’ [19]. ToonTalk’s
animated metaphors for programming constructs
are also rich in pictorial content, however,
and extendable by the use of pictures. An unfore-
seen positive consequence of this was that ToonTalk
allowed over 100 preschool children (aged 3–5)
and their teachers to make computer programs
employing a larger variety of programming
techniques than it had been hitherto possible with
other programming languages for preliterate
children, including parallel/concurrent statements,
message passing, input guards, and clients and
servers [8].

4. Issues regarding implementation and description of

animated programs

In order to provide a description of specific
features of ToonTalk, we need to address two
problems with the implementation and description
of animated programs: the creation of animation by
the user/programmer and providing a static descrip-

tion of the programs (for instances such as their
presentation on printed matter).

The creation of animation is a basic problem for
any animated programming language: since the
source code itself is animated, the user must be able
to produce the required animations. But producing
animations is often a complicated task in itself. The
Please cite this article as: L. Morgado, K. Kahn, Towards a specificat

Computing (2007), doi:10.1016/j.jvlc.2007.10.002
solution provided by ToonTalk is to make the
programming environment resemble a video game,
where the user controls and manipulates game
elements while programming.

(y) constructing animation is generally difficult
and time-consuming. Good animation authoring
tools help but it is still much more difficult to
animate an action than to describe it symboli-
cally. Luckily, there is one sort of computer
animation that is trivial for a user to produce—
video game animation. Even small children have
no troubles producing a range of sophisticated
animations when playing games like Mario
Brothers. While the range is, of course, very
limited relative to a general animation authoring
tool, video game style animation is fine for the
purposes of communicating programs to compu-
ters ([2], p. 201).

Even considering that the animation is that of a
traditional video game, the other aforementioned
problem remains: animated code, be it ToonTalk
code, filmed gestures or some other situation, is
troublesome to describe in a static medium such
as this written document. Sometimes a simple
screenshot will suffice, but not always. Circumven-
tions for this have been used, and throughout
this document we will employ the approach of
capturing pieces of the action as still frames and
arranging them in comic-book style (Fig. 1).
This approach has been used previously, and such
pieces have been called ‘‘snapshots’’ [2] or ‘‘comic
strips’’ [20].

In some circumstances, however, the lack of
motion in these images may pose doubts to the
reader. In those cases, we add textual comments
below each frame. These comments will convey to
the reader some of the information unavailable due
to lack of motion.

5. The ToonTalk programming environment

As mentioned above, currently ToonTalk is the
name for both a programming language, and a
programming environment where that language is
used to create programs. The most striking feature
of the programming environment is that it is child-
oriented, and for this reason there is a strong
emphasis on providing a global metaphor for
conducting programming activities. As much as
possible, all the programming activities take
place in a video-game world resembling a town or
ion of the ToonTalk language, Journal of Visual Language and

dx.doi.org/10.1016/j.jvlc.2007.10.002

ARTICLE IN PRESS

Fig. 2. ToonTalk programming environment: programmer and

toolbox outside.

Fig. 3. ToonTalk programming environment: programmer’s

hand and toolbox contents.

Fig. 1. Snapshots from swapping two elements (from Ref. [2], p. 202).

L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]] 5
suburb—which in ToonTalk terms is called a
‘‘city’’. The user (programmer) controls a doll/
figurine, seen as his/her programming persona—the
programmer’s avatar (Fig. 2).

Controlling that avatar, in video-game fashion,
the user can enter and leave houses, where
computations are taking place, observe and debug
ongoing computations, and create new computa-
tions using objects representing tools and primitives,
stored inside a legged, trailing, toolbox. Since the
city can grow large, a helicopter is provided, to
allow a bird’s-eye view and simplify navigation in
the city (the toolbox and the helicopter are visible
in Fig. 2).

The programming takes place within this global
metaphor. By clicking the mouse the programmer
‘‘kneels’’ on the floor of a house, to program or
debug. This makes the toolbox open, displaying the
basic programming primitives: number pads, letter
pads, and other ‘‘physical’’ objects, which can be
used for performing comparisons, process2 spawn-
ing, process termination, etc. The metaphor is
maintained because now the mouse movements still
2The term ‘‘process’’ is used here just for the sake of simplicity

in this short description. ‘‘Agent’’, ‘‘actor’’ or ‘‘object’’ could also

have been used.

Please cite this article as: L. Morgado, K. Kahn, Towards a specificat

Computing (2007), doi:10.1016/j.jvlc.2007.10.002
control the programmer’s avatar, visible as a hand
and an arm (i.e., not just a cursor shaped as a
floating hand). Fig. 3 presents this hand, the open
toolbox on the floor, and several tools and
primitives.

By ‘‘tools’’, we are referring to elements whose
only purpose is to allow the programmer to
manipulate the environment and the visual elements
used in programming: producing copies, zooming in
and out, deleting (vacuuming), erasing (creating a
generic version of an element), saving to disk, etc.
They are extensions to the programmer’s avatar. All
other elements of the ToonTalk programming
environment are primitives of the ToonTalk pro-
gramming language. In this taxonomy, the pro-
grammer’s hand and the programmer’s avatar are
not classified at all (neither as tools nor as
primitives); they are meant to be seen as extensions
to the human programmer’s physical actions. One
should have in mind that since tools are extensions
to the avatar, a different ‘‘programmer’’ might not
need them to achieve the same purpose: for
instance, if the programmer’s avatar was a winged
dragon, rather than a human, there would be
neither a need for an helicopter to fly around,
nor for a vacuum cleaner to get rid of things
(albeit charring things down to the ground might
ion of the ToonTalk language, Journal of Visual Language and

dx.doi.org/10.1016/j.jvlc.2007.10.002

ARTICLE IN PRESS
L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]]6
not be a good idea should one need them later).
In this sense, the elements which we classify as
ToonTalk tools are the ones presented in Table 1.
Table 1

ToonTalk programming environment tools and their purpose

aThe modes represented by letter buttons are presented as they appear in

of the ToonTalk programming environment.

Please cite this article as: L. Morgado, K. Kahn, Towards a specificat

Computing (2007), doi:10.1016/j.jvlc.2007.10.002
An alternative computer science perspective could
be to disregard the existence of tools altogether,
since all their purposes are potentially replaceable
the US English version, but are found localized in other versions

ion of the ToonTalk language, Journal of Visual Language and

dx.doi.org/10.1016/j.jvlc.2007.10.002

ARTICLE IN PRESS
L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]] 7
by a programmer’s avatar: in the previous para-
graph, we mentioned the use of a winged dragon
avatar as a way to do away with the helicopter and
at least part of the vacuum cleaner functionality,
and this line of reasoning can be applied to the other
tools (for instance, the magic wand would be
unnecessary if the programmer’s avatar was a
creature able to produce copies of anything it ate,
such as a Grumpy Converter from Bluxte [21]). As
we describe in the next section, the syntax of
ToonTalk is not dependent on the tools themselves
but on the primitives, in the form of physical
objects, of actions between the user and the objects,
or of actions amongst objects (all these actions are
visible through user-controlled or automated ani-
mations). Conceivably, any animation displaying an
action can be replaced by a completely different
one, as long as its effect and applicability remain
identical, and the language would still be ToonTalk,
even if the overall appearance changed a lot:
‘‘The ToonTalk world resembles a twentieth cen-
tury city. There are helicopters, trucks, houses,
streets, bike pumps, toolboxes, hand-held vacuums,
boxes, and robots. Wildlife is limited to birds and
their nests. This is just one of many consistent
themes that could underlie a programming system
like ToonTalk. A space theme with shuttle craft,
teleporters and the like would work as well. So
would a medieval magical theme or an Alice in
Wonderland theme’’ [2].

All elements in the ToonTalk programming
environment are ‘‘cartoons’’, even the tools. In line
with the language and environment metaphors, they
possess animations. Table 1, which details the tools,
presents examples of such animations.

6. The primitives of the ToonTalk programming

language

Aside from those visual elements classified as
‘‘tools’’ in the previous section, all remaining visual
elements in the ToonTalk programming environ-
ment are primitives of the ToonTalk programming
language. But by ‘‘visual elements’’ we are not
referring solely to the physical objects: they do not
constitute the entire set of primitives. As expected in
an animated language, several primitives are ani-
mated actions, not just physical objects. These two
kinds of primitives are object primitives (the physical
objects, which can be seen as values), and actions
upon them or amongst them, visible through user-
controlled or automated animations, which we call
Please cite this article as: L. Morgado, K. Kahn, Towards a specificat

Computing (2007), doi:10.1016/j.jvlc.2007.10.002
action primitives (and can be seen as operations).
Together, they give the programmer the power to
express a program in ToonTalk. Table 2 lists the
object primitives and Table 3 the main action
primitives available in ToonTalk.

The aforementioned tables present detailed lists
of ToonTalk environment tools and language
primitives, but they still fall short of providing an
actual picture of its programming. A crucial element
is the behavior of a specific primitive, the ‘‘dropping
on’’ primitive. As described in Table 3, this
‘‘dropping on’’ primitive represents the actual
action of taking an object primitive and releasing
it so it falls on top of another object primitive.
But what is the result of this action? As stated in
Table 3, ‘‘the actual operation depends on the nature

of the primitives being combined’’. In the visual
example included in that table, for instance, a
number pad for ‘‘1’’ was dropped on another
number pad with a ‘‘1’’, and the result was that
those numbers were added, resulting in a single
number pad, with the number ‘‘2’’. However, for
other primitives, the result can be quite different: for
instance, dropping an array on a robot without
constraints results in the initiation of the program-
ming of the operations of that robot. (This
particular case is a basic building block of
ToonTalk programming.) Yet other combinations
of primitives produce results such as sending a
message, spawning a process, or defining a template.
For this reason, we provided Table 4, which details
the results of the combination of different object
primitives, by dropping one on top of another.

7. Doing the coding of ToonTalk programs

Fig. 1 presents an example of a program
performed using the primitives and combinations
just presented (an ‘‘exchange two numbers’’ pro-
gram). An example of a running program, using two
robots that communicate amongst them is presented
further ahead, on Fig. 12.

In language-specific terms, a ToonTalk program
is built by programming robots. This programming
is achieved by executing a sequence of actions such
as those in the following example, describing the
process of coding the program in Fig. 1, for
exchanging two numbers:
1.
ion
Create a cubby box with a starting example:
elements that define the robot’s constraints
(Fig. 4).
of the ToonTalk language, Journal of Visual Language and

dx.doi.org/10.1016/j.jvlc.2007.10.002

ARTICLE IN PRESS
L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]]8
2.
Ta

To

P

C

Drop that array on an untaught robot (Fig. 5).

3.
 Upon entering the robot’s thought bubble, use the

mouse to control the robot, and perform the
desired set of actions on the constraints (see Fig. 1).
ble 2

onTalk object primitives

lease cite this article as: L. Morgado, K. Kahn, Towards a specificat

omputing (2007), doi:10.1016/j.jvlc.2007.10.002
4.
ion
The result is a robot with a set of constraints on
its operation (Fig. 6).
5.
 The constraints of this robot can be generalized
[22], allowing it to work on any numbers or even
of the ToonTalk language, Journal of Visual Language and

dx.doi.org/10.1016/j.jvlc.2007.10.002

ARTICLE IN PRESS

Table 2 (continued)

aMost of these primitives are not visually static, they possess animations. However, those animations do not represent actions and serve no

specific programming purpose, and are employed solely for aesthetic or metaphoric reasons.bThis is the current status of the ToonTalk

language and environment, which does not possess an actual specification document. Envisioning such a specification, one could consider

all object primitives as programmable objects, and the current ToonTalk software simply as a language implementation where only some

of those programmable objects are usable as such.cThe term ‘‘collection’’, used here, aims to convey a distinction between notebooks and

arrays (which are represented by cubby boxes). While ToonTalk collections are ordered (i.e., notebooks have page numbers), just like

arrays, they are distinguishable from ToonTalk arrays in several aspects. Firstly, they are indexed: in a notebook, a program can directly

access an element, using a value that only becomes defined at runtime (either by page number or textual or pictorial content of pages);

cubby box arrays must be manipulated or iterated. Secondly, notebooks do not have a defined size: they hold an unlimited number of

elements, but the only way to specify a number of ‘‘empty’’ cells/pages is to have a non-empty cell after them in numerical page order.

Thirdly, notebooks are not divisible: there is no primitive to split the contents of one notebook over two notebooks, whereas with cubby

boxes one can readily do that operation.

L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]] 9
any other array contents. This is achieved
by erasing the number pads (meaning ‘‘any
number’’) or vacuuming them (the empty-hole
constraint means ‘‘any content’’), as can be seen
in Fig. 7.

Such robots can be activated by dropping on
them an array with which to work. For instance, a
robot such as the one on the right-side in Fig. 7,
with generalized constraints, will accept any of the
arrays in Fig. 8, but not the arrays in Fig. 9.

In Fig. 8, all the cubby boxes have a number on
the first hole, matching the first-hole constraint of
the robot in Fig. 7 (‘‘any number’’). The contents of
the second hole do not matter, because there is not
any constraint on the contents of it.

In Fig. 9, the first and second arrays do not have
numbers in the first hole, and so do not match the
first-hole constraint. The third array does have a
number in the first hole, but the box is a three-hole
box, and the robot’s thought bubble constraint on
box size specifies a two-hole box. Table 5 presents a
summary of these matching rules. A point to
note in matching is that labels, comments, and
names are never considered. In ToonTalk, all these
are simply provided for the convenience of the
programmer (or anyone curious about what the
program does), and do not constitute programming
elements (i.e., one can neither lookup a bird named
‘‘Polly’’, a box labeled ‘‘X’’, nor a notebook labeled
‘‘Samples’’).
Please cite this article as: L. Morgado, K. Kahn, Towards a specificat

Computing (2007), doi:10.1016/j.jvlc.2007.10.002
8. Debugging support in the programming

environment

The ToonTalk programming environment pro-
vides visual cues to help the programmer detect
constraint problems such as those described above.
When a constraint is not fulfilled, the robot stops
and that failing constraint is highlighted in red
(Fig. 10).

These visual cues are one of the features of the
ToonTalk system that help the programmer under-
stand the program execution. But perhaps the most
important feature on this regard is the possibility of
observing the execution of a program at various
speeds and levels of complexity, as we will now
explain.

After programming a robot, there are four
different ways to make it execute its sequence of
operation. These not only provide for different
program requirements, but also help the programmer
understand the execution of the program. They are:
1.
ion
Put the robot on the floor and directly drop on
the robot the box for it to work with.
2.
 Put in a truck both the robot and the box with
which it will work (the truck will do the
dropping-on, inside a new house).
3.
 Put the robot on the back of a picture and
directly drop on the robot the box for it to work
with. The robot will start working when the
picture is flipped over.
of the ToonTalk language, Journal of Visual Language and

dx.doi.org/10.1016/j.jvlc.2007.10.002

ARTICLE IN PRESS

Table 3

ToonTalk main action primitives

L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]]10

ARTICLE IN PRESS
L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]] 11
4.
Ta

Ma

P

C

In any of the three previous methods, replace
some of part of the box contents by nests;
the robot will only start working when object
primitives are eventually dropped on those
nests.
ble 4

in results in ToonTalk of using the ‘‘drop on’’ primitive

lease cite this article as: L. Morgado, K. Kahn, Towards a specificat

omputing (2007), doi:10.1016/j.jvlc.2007.10.002
The first method, presented in Fig. 11, is a typical
test (or debugging) situation. Upon being given a

box matching its constraints, a robot will proceed
with the execution of its sequence of operations,
under the gaze of the programmer, at a speed
ion of the ToonTalk language, Journal of Visual Language and

dx.doi.org/10.1016/j.jvlc.2007.10.002

ARTICLE IN PRESS

Table 4 (continued)

L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]]12

Please cite this article as: L. Morgado, K. Kahn, Towards a specification of the ToonTalk language, Journal of Visual Language and

Computing (2007), doi:10.1016/j.jvlc.2007.10.002

dx.doi.org/10.1016/j.jvlc.2007.10.002

ARTICLE IN PRESS

Table 4 (continued)

aSee Section 11 for more details.bThe picture in the ‘‘visual result’’ column was edited for the benefit of printed clarity. In ToonTalk, the

presence of items ‘‘behind’’ the first is not visible until the first one is removed.cThe address sensors can hold the address of the city block

where the house should be created (it will be created in the first available lot within that block). A notebook dropped on a truck means that

the robot will use it as its own main notebook, instead of the programmer’s, thus avoiding contact with a global state. House pictures will

determine the appearance of the new house (if no pictures are used, it defaults to the appearance of the house where the spawning was

performed).

L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]] 13

Please cite this article as: L. Morgado, K. Kahn, Towards a specification of the ToonTalk language, Journal of Visual Language and

Computing (2007), doi:10.1016/j.jvlc.2007.10.002

dx.doi.org/10.1016/j.jvlc.2007.10.002

ARTICLE IN PRESS

Fig. 4. Starting example for a sample robot.

Fig. 5. Dropping on a robot an array with the starting example.

Fig. 6. Taught robot, thought bubble identifies constraints.

Fig. 7. Generalizing constraints in ToonTalk: erasing and

vacuuming.

Fig. 8. Arrays acceptable fo

L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]]14

Please cite this article as: L. Morgado, K. Kahn, Towards a specificat

Computing (2007), doi:10.1016/j.jvlc.2007.10.002
identical to that used by the programmer to perform
the same actions (albeit without pauses).

This method allows one to finely observe the
behavior of a robot with a specific array, to
determine whether its actions are the intended ones.
However, since the execution proceeds at human
pace and with the robots in view, it is usually not
suited to most execution situations. But this is not a
real limitation, because the programmer’s avatar
can get up, and leave the house where the robots are
working. By doing so, the robots will execute at full
speed. Therefore, this method can be suitable for all
situations in which the visual presence of the robots
does not place a problem. The programmer can let
the computation proceed at full speed inside the
houses, and simply enter a house to see the robots
working in detail. There are three levels of detail
and execution speed for such observations: while the
avatar is kneeling, the robots execute with full
detail, at a speed similar to that of a human
programmer; when the avatar is standing up, the
detail level is reduced and the execution speed is
increased; when the avatar leaves the house and flies
over the city in the helicopter, the level of detail if
further reduced, displaying only trucks (spawning),
bombs (termination), and birds (communication),
no finer detail.

The second method means that the moment the
truck departs, the computation is running, but not
under the eye of the programmer. This is an
adequate situation in several cases. For instance, if
one already debugged the program reasonably well
and simply wants it to execute and terminate
autonomously; or if one wants it to run continu-
ously and simply observe the computation results
indirectly, as messages being delivered to a pro-
grammable object or some other remote effect
(changes to images in view for example).

The third method is similar to the second, in that
the robots will be executing at full speed, and the
programmer can only observe indirect effects. Its
difference lies in practical issues. For instance, if one
wants to inspect all robots manipulating an image’s
properties, it is easier to find them stored behind
that image, rather than having to determine which
houses hold them, amidst many others. And the
r the robot in Fig. 7.

ion of the ToonTalk language, Journal of Visual Language and

dx.doi.org/10.1016/j.jvlc.2007.10.002

ARTICLE IN PRESS

Fig. 9. Arrays unacceptable for the robot in Fig. 7.

L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]] 15
robots can use the picture’s sensors to provide some
feedback regarding their state (e.g., changing its
position, size, color, etc.). Also, sets of robots
working behind pictures can be placed as a group
behind yet other pictures, or stored together in a
notebook, along with their assigned boxes. This
simplifies the combination and reuse of different
programs. Finally, a new set of robots can be
activated rapidly, by simply creating a copy of a
picture with robots behind (by copying an existing
picture or by instantiating a template), rather than
having to spawn a new house for each robot in a
group.

The fourth method, as stated in its description
above, is a modification to the three previous
methods, based on the technique employed in
ToonTalk programming to perform robot-to-robot
communication: sending messages through birds.
This method consists in providing a robot with a
box whose contents do not entirely match the
robot’s constraints: rather, some of the box’s holes
will contain only a nest. Such a robot, when about
to start working, will simply be idle, until the nests
in its box have received objects that match the
robot’s constraints. In Fig. 12, for instance, the
robot on the right is working, but doing nothing: it
is waiting until something arrives in the nest, for
then to check it against its constraints (in this case,
it has to be a number). The nest belongs to the bird
on the left. The left-side robot, called ‘‘Adds 1’’, has
been taught to increase its left-side number by 1 and
drop a copy of the result on the bird. The bird will
take it to the nest in the right-side robot which will
then proceed.3

An example can clarify the way in which this
technique may also be used to help the programmer
understand the behavior of a program. The robot
on the right side in Fig. 12 accumulates the received
values in the hole labeled ‘‘sum’’. Supposing that the
3This pair of robots produces the following results: on the left,

at each iteration the number will increase by one, so the number

will be 0, 1, 2, 3, 4, y; on the right, the number dropped on the

nest is added to the value already in the hole labeled ‘‘sum’’,

which will be ‘‘0, 1, 3, 6, 10, y’’, i.e. the result of

0+1+2+3+4+y

Please cite this article as: L. Morgado, K. Kahn, Towards a specificat

Computing (2007), doi:10.1016/j.jvlc.2007.10.002
number it holds is not just any number, but a
control for a picture’s width, then running this
robot on the back of a picture (while the other robot
from Fig. 12, running in another house, provides
numbers), will simply make it grow large very fast
(Fig. 13), because the left-side robot in Fig. 12 will
provide new numbers quickly and the right-side
robot in Fig. 12 will update the picture at an
identical speed.

Should the programmer find this behavior odd,
he/she may want to inspect the impact of the width-
changing robot. But waiting for its animation to
unroll for each received number may be tedious.
Using the bird and nest can be helpful. The robot
can stay behind the image, working on its width,
and the programmer can hand new numbers to
the bird directly, watching the resulting effect on the
picture width, rather than having to wait for the
animation of the robot (Fig. 14).

9. Linking to the machine state of the programming

system

The manipulation of controls for a picture, as
mentioned above, is perhaps easier to understand if
detailed a bit further. The ‘‘controls’’ themselves are
regular object primitives (text pads, number pads,
boxes, images) that present special behaviors. This
is how ToonTalk links itself to the state of the
programming system. Terminology-wise, these ob-
ject primitives with special behaviors are only called
‘‘controls’’ when they provide access to the state
of an internal ToonTalk programmable object
(a picture, for instance); they are called ‘‘sensors’’
instead, if they provide access to the state of the
computer system or the overall ToonTalk program-
ming environment (mouse position, pressed keys,
looks of the current ToonTalk house, etc.).

The sensors can be found in the ‘‘Sensors’’
notebook, within ToonTalk’s main notebook. The
controls, being specific to a programmable object,
can be found in the back of each programmable
object, which can be accessed in several ways, while
the programmable object is being held: pressing ‘‘F’’
for ‘‘flip’’; holding down a shift key and left-clicking
ion of the ToonTalk language, Journal of Visual Language and

dx.doi.org/10.1016/j.jvlc.2007.10.002

ARTICLE IN PRESS

Table 5

Summary of constraint-matching rules in ToonTalk

aIn this row, the rightmost cell shows two sample matching teams. Firstly, a team that is identical to the constraint. Secondly, a team where

several changes occurred, but that still matches the constraint: a new robot was added to the team, but since it is located behind the first

two, it is not considered for matching purposes; and the constraint of the second robot was changed, but the robot itself is the same.

L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]]16
the mouse; and, if the user activates the appropriate
program customization option, right-clicking the
mouse. Fig. 15 presents the resulting animation,
Please cite this article as: L. Morgado, K. Kahn, Towards a specificat

Computing (2007), doi:10.1016/j.jvlc.2007.10.002
with a picture (a programmable object) being
flipped to reveal its contents (in this case, it is
empty) and the notebook of controls flying out of it.
ion of the ToonTalk language, Journal of Visual Language and

dx.doi.org/10.1016/j.jvlc.2007.10.002

ARTICLE IN PRESS

Fig. 10. ToonTalk robots after constraints failed to match.

Fig. 11. First execution method: dropping the working box on a robot and watching it work.

Fig. 12. Two robots connected through a bird–nest pair.

L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]] 17
Repeating the flip operation returns the program-
mable object to its original state, and the notebook
of controls returns to its back.
Please cite this article as: L. Morgado, K. Kahn, Towards a specificat

Computing (2007), doi:10.1016/j.jvlc.2007.10.002
Table 6 presents an assortment of sample controls
and sensors, selected for the purpose of presenting
the varieties of this kind of elements. It should be
ion of the ToonTalk language, Journal of Visual Language and

dx.doi.org/10.1016/j.jvlc.2007.10.002

ARTICLE IN PRESS

Fig. 14. Sending one number to the robot on the back of the picture of a doll, using the bird.

Fig. 15. Flipping a programmable object to access its contents and notebook of controls.

Fig. 13. Dispatching one robot, with the width of a small picture of a doll, and 6 s later.

L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]]18
noted that sensors and controls commonly present
some animated cue, in order to render them distinct
from regular, static-looking objects. Pads have a
‘‘light marquee’’ outline, and picture controls flash
regularly, for example.
4There is no fundamental reason for this: it is a user-centered

design option, resulting from observing confusion among early

beta testers when birds or nests were dropped on birds.
10. Communication semantics: ‘‘bird/nest algebra’’

In ToonTalk, inter-process communication is
performed by means of message passing, based on
two kinds of object primitives: birds and nests
(vd. Table 2). Their use has been mentioned above
regarding methods of execution or debugging, but
there are complexities that warrant a more detailed
description.

The basic idea is this: a bird is associated with its
nest, and will deliver into that nest the object
primitives that are dropped on it—this constitutes a
bird-nest communication channel. That nest will store
the received object primitives as a first-in-first-out
list (vd. Table 4).
Please cite this article as: L. Morgado, K. Kahn, Towards a specificat

Computing (2007), doi:10.1016/j.jvlc.2007.10.002
The complexities arise from a few properties of
birds and nests when combined with other Toon-
Talk primitives:
1.
ion
the ‘‘magic wand copy’’ primitive (vd. Table 2)
can be applied to birds and/or nests, resulting in
a duplication of either or both ends of a bird–nest
communication channel;
2.
 two nests can be combined, in effect ‘‘merging’’
the receiving end of two different communication
channels (vd. Table 4);
3.
 it is possible to place contents directly into a nest,
without using any bird at all (vd. Table 4), in
effect ‘‘pre-loading’’ data into the receiving end
of the channel;
4.
 not all object primitives can be dropped on a
bird,4 to be sent: some can only be sent if they are
part of an array (i.e., inside a cubby box).
of the ToonTalk language, Journal of Visual Language and

dx.doi.org/10.1016/j.jvlc.2007.10.002

ARTICLE IN PRESS
L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]] 19
We will illustrate the working of this method of
communication under these complexities. For the

sake of clarity, different birds and/or nests will be
labeled differently, but as mentioned previously, the
labels themselves have no meaning code-wise.
Table 6

ToonTalk controls and sensors

Please cite this article as: L. Morgado, K. Kahn, Towards a specificat

Computing (2007), doi:10.1016/j.jvlc.2007.10.002
The first situation is bird duplication, starting
from a simple bird–nest pair: BirdA and NestA. By
copying the bird (with the magic wand, for
instance), we duplicate the sending end. Now,
object primitives dropped on either copy of BirdA
ion of the ToonTalk language, Journal of Visual Language and

dx.doi.org/10.1016/j.jvlc.2007.10.002

ARTICLE IN PRESS

Table 6 (continued)

L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]]20

Please cite this article as: L. Morgado, K. Kahn, Towards a specification of the ToonTalk language, Journal of Visual Language and

Computing (2007), doi:10.1016/j.jvlc.2007.10.002

dx.doi.org/10.1016/j.jvlc.2007.10.002

ARTICLE IN PRESS

Table 6 (continued)

L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]] 21

Please cite this article as: L. Morgado, K. Kahn, Towards a specification of the ToonTalk language, Journal of Visual Language and

Computing (2007), doi:10.1016/j.jvlc.2007.10.002

dx.doi.org/10.1016/j.jvlc.2007.10.002

ARTICLE IN PRESS

Table 6 (continued)

Fig. 16. Duplication at one end of a communication channel.

L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]]22
will be delivered into the same nest, NestA as shown
on the left half in Fig. 16.

A second situation is that of nest duplication,
starting from a simple bird–nest pair: BirdB and
NestB. By copying the nest (with the magic wand,
for instance), we duplicate the receiving end, as
shown on the right half in Fig. 16. Now object
primitives dropped on BirdB are duplicated
(copied), and each NestB receives a copy. A different
perspective on this could be that the object primitive
is turned into a template upon being dropped on a
bird, and from that template several instances are
created, one for each nest.
All further complications of bird or nest duplica-
tion follow this same rule. For instance, once we
have BirdA1 and BirdA2, we could duplicate NestA
and get NestA1 and NestA2. And both birds would
deliver copies of messages to both nests.

In these situations, issues arise of synchronization
of message delivery. For instance, if we assume that
there are two copies of BirdA, which we will refer to
as BirdA1 and BirdA2, in what order do they place
messages into the queue at NestA? Conversely, if
there are two copies of NestB, which we will refer to
as NestB1 and NestB2, in what order are messages
duplicated and delivered into their queues?

ARTICLE IN PRESS
L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]] 23
Here, ToonTalk considers that delivery is
independent of speed and asynchronous. That
is, items are guaranteed to arrive into a nest
in the same order as they were sent via the same
bird, but not necessarily in an uninterrupted
sequence.

For instance, if BirdA1 is given the sequence
{1,2,3,4,5} and BirdA2 is given the sequence
{A,B,C,D,E}, then NestA may not only receive
{1,A,2,B,3,C,4,D,5,E}, but also {1,2,A,3,B,C,4,
D,5,E}, or even {A,B,C,D,E,1,2,3,4,5}. Similarly,
if BirdB is given the sequence {1,2,3,4,5}, NestB1 and
NestB2 will each receive a copy of this sequence in
the same order, but the timing of arrival of the
elements may vary: a ‘‘1’’ might arrive at NestB1 just
after another ‘‘1’’ arrived at NestB2, or the other
way around, or even all elements may be delivered
into a nest before any are delivered into the other
nest at all.

A third situation is that of nest merging. As
shown in Table 4, a nest can be dropped on another,
and this causes both nests to be merged, in effect
merging the receiving ends of both communication
channels. For instance, if NestA and NestB are
merged into NestAB, then both BirdA and BirdB will
deliver messages into NestAB, as will other copies of
these birds. However, the merged nest cannot be
unmerged: any operation (i.e., duplication) will
operate on the merged nest, NestAB.

However, NestA and NestB might have previously
existing copies, i.e., NestA1, NestA2, Nest B1, Nest

B2, y If two nests are merged, creating for instance
NestA1B1, this does not affect the other copies. This
way, any BirdA will deliver copies of messages into
NestA2 and NestA1B1, but not on NestB2: and any
BirdB will deliver copies of messages into NestB2
and NestA1B1, but not on NestA2.

A fourth situation is that of direct nest queue

manipulation. As listed in Table 4, an object
primitive can be placed into an empty nest, in effect
pre-loading data into the nest queue. However, we
must clarify that this can only be done exactly once:
when the nest is empty: it is not possible to preload
two or more object primitives into the nest, since the
moment it has any contents all attempts to directly
drop more elements on top of it will result in the
combination of the topmost element with the
dropped-on one. Therefore, only birds can cause a
nest to queue-up messages. However, one can
picture a process holding the nest that attempts to
empty it and place a new element inside, before
further messages arrive, in effect ‘‘inserting’’ extra
Please cite this article as: L. Morgado, K. Kahn, Towards a specificat

Computing (2007), doi:10.1016/j.jvlc.2007.10.002
elements in the message arrival sequence, if not in
the queue itself.

A final situation is that of valid object primitives

for messages. In current implementations of Toon-
Talk, the following object primitives cannot be sent
in messages, unless they are inside a cubby box
(i.e., part of an array): birds, nests, bombs, trucks,
robots, and notepads. One could consider this
limitation somewhat arbitrary (as mentioned in
footnote 3, it is merely a user-centered design
option) and therefore unnecessary, but for one
situation that warrants a close analysis: nests.
Allowing nests to be sent as a message themselves
would lead to situations where a nest would be
placed on top of another. One may speculate that
there could be two different interpretations as to
the result of this. One might see this as meaning that
the nest sent via bird would be placed on top
of the receiving nest. This bottom nest (and its
queue) would then for all purposes be inaccessible
to the receiving process, unless it regularly checked
for this situation of ‘‘nest on top of nest’’. This, we
believe, is highly undesirable, since it would
potentially lead to many situations where systems
resources would be wasted in these ‘‘hidden
queues’’. Therefore, we propose that a formal
ToonTalk specification considers that upon arrival
of messages at the end of a channel, these are being
‘‘dropped’’ on top of the nest. Consequently, a nest
being sent via bird would be a ‘‘nest dropped on
nest’’ situation, resulting in the merging of both
nests—a situation that would be semantically
identical to a bird-duplication on the part of the
sending process.

11. Final thoughts

The ToonTalk software product is the proof-of-
concept of animated programming (or action-based
programming, if seen from the perspective of the
programmer’s actions, not their representation).
Furthermore, it is also a proof-of-concept of the
possibility of conducting powerful programming
activities within a virtual world, entirely in terms of
visual manipulation of elements within that world.
However, the ToonTalk language itself lacks an
actual specification, and as a result previous works
have not rendered clear the distinction between
the ToonTalk programming environment and the
ToonTalk programming language.

Our contribution here lacks the formal approach
of a typical language specification. Determining
ion of the ToonTalk language, Journal of Visual Language and

dx.doi.org/10.1016/j.jvlc.2007.10.002

ARTICLE IN PRESS
L. Morgado, K. Kahn / Journal of Visual Languages and Computing] (]]]])]]]–]]]24
how to perform such a formal specification for an
animated programming language is a very challen-
ging problem, and would in itself constitute an
interesting research project. A complete specifica-
tion could also identify a language kernel, capable
of creating an equivalent full-fledged language
specification within the language itself. What we
do provide is a contribution towards such a
specification, by clarifying the distinction between
the environment and the language, describing the
building blocks of this language, and the meaning of
their combinations.
Acknowledgments

Many people have contributed with comments,
suggestions, reflections, and bug reports to the
development and refinement of the ToonTalk
language in the form of its implementations as the
commercial products ToonTalk, ToonTalk 2, and
ToonTalk 3. We would like to thank them all. Also,
we would like to thank members of the ToonTalk
mailing list for theirs comments and insights,
particularly Gordon Simpson, Jack Waugh, Jakob
Tholander, Lennart Mogren, Mikael Kindborg,
Richard Noss, Tiago Correia, Yishay Mor, and
Ylva Fernaeus.
References

[1] K. Kahn, ToonTalkTM—an animated programming envir-

onment for children, in: D. Harris (Ed.), & R. Bailey

(assistant Ed.), NECC ‘95 Proceedings, 17–19 June 1995,

Baltimore, MD, Towson University, Towson, MD, USA,

1995.

[2] K. Kahn, ToonTalkTM—an animated programming envir-

onment for children, Journal of Visual Languages &

Computing 7 (2) (1996) 197–217.

[3] Animated Programs, ToonTalk—Making Programming

Child’s Play, /http://www.toontalk.com/S (retrieved 09.05.06).

[4] Playground Project, 3rd Annual Report—September 2001,

/www.ioe.ac.uk/playground/RESEARCH/reports/finalre-

port/S (retrieved 09.05.06).

[5] WebLabs Project, Introduction, /http://www.lkl.ac.uk/

kscope/weblabs/S (retrieved 29.11.06).

[6] L. Morgado, M.G.B. Cruz, K. Kahn, Using ToonTalk in

kindergartens, in: Proceedings of the IADIS International

Conference e-Society 2003, vol. II, IADIS, Lisbon, Portugal,

2003, pp. 988–994.

[7] L. Morgado, M.G.B. Cruz, K. Kahn, ToonTalk in

kindergartens: field notes, Journal of Digital Contents 1 (1)

(2003) 111.
Please cite this article as: L. Morgado, K. Kahn, Towards a specificat

Computing (2007), doi:10.1016/j.jvlc.2007.10.002
[8] L. Morgado, Framework for computer programming in

preschool and kindergarten, Doctoral Thesis, Universidade

de Trás-os-Montes e Alto Douro, Vila Real, Portugal, 2006.

[9] T.S. McNerney, From turtles to Tangible Programming

Bricks: explorations in physical language design, Personal

and Ubiquitous Computing 8 (5) (2004) 326–337.

[10] P. Frei, V. Su, B. Mikhak, H. Ishii, Curlybot: designing a

new class of computational toys, in: Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems, ACM Press, New York, NY, 2000, pp. 129–136.

[11] H.S. Raffle, Topobo: a 3-D constructive assembly system

with kinetic memory, Master’s Dissertation, School of

Architecture and Planning, Massachusetts Institute of

Technology, Cambridge, MA, 2004.

[12] T. Green, A. Blackwell, Cognitive dimensions of informa-

tion artefacts: a tutorial, version 1.2, /http://www.cl.cam.

ac.uk/�afb21/CognitiveDimensions/CDtutorial.pdfS,1998

(retrieved 26.06.07).

[13] D. Edge, A. Blackwell, Correlates of the cognitive dimen-

sions for tangible user interface, Journal of Visual

Languages and Computing 17 (2006) 366–394.

[14] K.N. Whitley, Visual programming languages and the

empirical evidence for and against, Journal of Visual

Languages and Computing 8 (1997) 109–142.

[15] G. Dowling, A. Tickle, K. Stark, J. Rowe, M. Godat,

Animation of complex data communications concepts may

not always yield improved learning outcomes, in: Proceed-

ings of the 7th Australasian Conference on Computing

Education, Australian Computer Society, Darlinghurst,

Australia, 2005, pp. 151–154.

[16] R.E. Mayer, M. Hegarty, S. Mayer, J. Campbell, When

static media promote active learning: annotated illustrations

versus narrated animations in multimedia instruction,

Journal of Experimental Psychology: Applied 11 (4) (2005)

256–265.

[17] B.B. Bederson, A. Boltman, Does animation help users build

mental maps of spatial information? in: Proceedings of the

1999 IEEE Symposium on Information Visualization, IEEE

Computer Society, Washington, DC, 1998, pp. 28–35.

[18] W. Schnotz, T. Rasch, Enabling, facilitating, and inhibiting

effects of animations in multimedia learning: why reduction

of cognitive load can have negative results on learning,

Educational Technology Research and Development 53 (3)

(2005) 47–58.

[19] A.F. Blackwell, Pictorial representation and metaphor in

visual language design, Journal of Visual Languages and

Computing 12 (2001) 223–252.

[20] M. Kindborg, Concurrent comics—programming of social

agents by children, Linköping studies in science and

technology, Dissertation No. 821, Department of Computer

and Information Science, Linköpings universitet, Linköping,

Sweden, 2003.

[21] J.-C. Mézières, P. Christin, Ambassador of the shadows,

(L. Mitchell, Trans.), Hodder & Stoughton, London, UK,

1984. (Valerian: Spatio-Temporal Agent, ISBN 0-450-05767-4).

[22] K. Kahn, Generalizing by removing detail: how any

program can be created by working with examples, in: H.

Lieberman (Ed.), Your Wish Is My Command: Program-

ming By Example, Morgan Kaufmann, San Francisco, CA,

2001 (Chapter 2).
ion of the ToonTalk language, Journal of Visual Language and

http://www.toontalk.com/
http://www.ioe.ac.uk/playground/RESEARCH/reports/finalreport/
http://www.ioe.ac.uk/playground/RESEARCH/reports/finalreport/
http://www.lkl.ac.uk/kscope/weblabs/
http://www.lkl.ac.uk/kscope/weblabs/
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf
dx.doi.org/10.1016/j.jvlc.2007.10.002

	Towards a specification of the ToonTalk language
	Introduction
	Animated programming
	Why program with animation?
	Issues regarding implementation and description of animated programs
	The ToonTalk programming environment
	The primitives of the ToonTalk programming language
	Doing the coding of ToonTalk programs
	Debugging support in the programming environment
	Linking to the machine state of the programming system
	Communication semantics: ’’bird/nest algebra’’
	Final thoughts
	Acknowledgments
	References

